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Abstract. We calculate the frequency-dependent effective interaction between 3d electrons for
Fe, Ni, and MnO (antiferromagnetic type II) in the random-phase approximation (RPA), where the
contributions of 3d electrons to the dielectric function are projected out. It is concluded that the
real part of the interaction for Fe and Ni shows only a weak frequency dependence.

1. Introduction

For strongly correlated systems like transition-metal compounds with 3d electrons, the ordinary
ab initio calculation, which is based on the density-functional (DF) formalism in the local
density approximation (LDA), sometimes fails to predict such physical properties as the
ground-state magnetism. In such cases, one of the most popular theoretical approaches is
based on models such as the Hubbard Hamiltonian, where the effective screened Coulomb
interaction acts only between localized electrons, e.g., 3d or 4f electrons. The interaction
in these models should be renormalized in the sense that the screenings by other degrees of
freedom, typically that of the sp electrons, are taken into account. The screened interactions
have also been used in the calculation of the local part of the self-energies in various recently
developed methods based on ab initio calculations, e.g., T -matrix approaches [1], Igarashi’s
three-particle approaches [2, 3], and the LDA + U method [4]. A common question in these
approaches is that of how to determine the effective interaction.

To date, two different kinds of ab initio approach have been proposed. One is the
constrained LDA approach [5]; the other is based on the linearized time-dependent Hartree
approximation or, equivalently, the random-phase approximation (RPA) [6]. The latter
approach was implemented by Springer and Aryasetiawan [7] by using the LMTO (linearized
muffin-tin orbital) method and the atomic sphere approximation (ASA). They presented the
diagonal part of the interaction calculated by means of the RPA. This method has some
advantages over the constrained LDA calculation:

(1) it can give the energy dependence of the interaction;
(2) it can include the non-spherical density response;
(3) all of the components of the interaction matrix are given simultaneously.

These features are not readily available in the constrained method. In this paper, we calculate
the energy dependence of all the matrix elements, which are compactly described by the use
of three Racah parameters (A, B, and C). We exploit a kind of RPA method to calculate the
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Racah parameters. In this method (hereafter called the projected RPA (PRPA) method), we
use polarization functions from which the contributions of the 3d electrons are projected out.
The effective interaction so defined enables us to calculate a self-energy and other quantities,
without having to be concerned about the double counting of the effects of polarization arising
in the 3d electrons, which otherwise has to be subtracted consistently. This last point is crucial
in obtaining the interaction to be used in the various model Hamiltonians. We show that the
real part of the calculated interaction for Fe and Ni gives a rather weak frequency dependence
after the 3d contributions are projected out.

These calculations are performed on periodic lattices with the usual primitive unit cells.
In other words, we assume that the off-site 3d electrons do not contribute much to the screened
interaction. In order to confirm the validity of this seemingly crude approximation, we also
repeat the calculations with a large unit cell. In this way, we can properly include the
contributions of the off-site 3d electrons to the screening. However, we will show that the
results are not very different from those obtained by using the ordinary method for the primitive
unit cell.

We have tried to apply the PRPA to MnO (antiferromagnetic type II) to calculate the
Racah parameters for the Mn 3d basis. However, our analysis shows that the Mn 3d radial
functions change rapidly with energy where the projected density of states (PDOS) of Mn 3d
is to be calculated. As a result, the Racah parameters are strongly dependent on the choice
of the energy εMn 3d of the radial wave functions which we use for the calculation of the
matrix elements. For this reason, we will give Racah parameters calculated by the use of
εMn 3d-energies corresponding to (i) occupied and (ii) unoccupied states.

In the LMTO-ASA method, the Kohn–Sham eigenfunctions ψkj (r, R) are written as
linear combinations of the localized MT orbitals (MTOs). Here R is the index for the atomic
sphere (AS) and r = (r, θ, φ) is a vector denoting the position in each AS (0 � r � R̄).
The MTOs are constructed as linear combinations of the two kinds of on-site basis function.
The basis functions are the φ-basis and the φ̇-basis, which are written as φRl(r)YL(θ, φ) and
φ̇α
Rl(r)YL(θ, φ) ≡ (φ̇Rl(r) + oαφRl(r))YL(θ, φ), respectively. Here φRl(r) and φ̇Rl(r) denote

the solutions of the radial Schrödinger equation and its energy derivative. We denote these
basis functions together as φRa(r) hereafter. (oα was introduced in the LMTO-ASA method
so that the logarithmic derivatives of φ̇α

Rl(r) at r = R̄ agree with those of J 0
Rl(r) − αK0

Rl(r),
where α is the screening parameter, and J 0 and K0 are the regular and irregular solutions of the
Laplace equation, respectively. See reference [8].) As a result, ψkj (r, R) can be expanded as

ψkj (r, R) =
∑
a

A
kj
RaφRa(r). (1)

We have two independent basis functions, the φ-basis and the φ̇-basis, in each of the RL-
channels in the expansion. From these eigenfunctions (and eigenvalues), we can calculate the
screened Coulomb interaction W(rR, r′R′, ω) in the RPA. Expressed symbolically, it is

W = v(1 − P 0v)−1 (2)

where

P 0(rR, r′R′, ω) =
∑
abcd

φRa(r)φRb(r)P
0(Rab,R′cd, ω)φR′c(r

′)φR′d(r
′). (3)

Here P 0 is the non-interacting dielectric function constructed from the eigenfunctions and
eigenvalues, and v is the bare Coulomb interaction.

The φRa(r) are classified into two sets: an internal part I , and an external part E. For
example, we can identify I as the φ-basis for 3d, and E as the other φ-basis and the φ̇-basis.
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The electron density is expanded as

n̂(rR) =
∑
ab

n̂RabφRa(r)φRb(r)

and we can define a set of the internal parts of the coefficients as In ≡ {n̂Rab| Ra ∈ I and
Rb ∈ I } and a set of the external parts as En ≡ {n̂Rab|Ra ∈ E or Rb ∈ E}. The effective
interaction W̃ (rR, r′R′, ω) for the internal degree of freedom corresponding to I is defined as
a renormalized interaction; we take into account the contribution of the external part n̂Rab ∈ En

as the polarizable medium evaluated in the RPA. As a result, we obtain W̃ as

W̃ = v(1 − P̃ 0v)−1 (4)

where P̃ 0 is a dielectric function that is identical to P 0 defined in equation (3) except that
we omit terms containing products φRa(r)φRb(r) (Ra ∈ I and Rb ∈ I ) or φR′c(r

′)φR′d(r
′)

(R′c ∈ I and R′d ∈ I ). The internal part of the self-energy #I can be calculated from the
internal parts of the Green functions IG ≡ {GRaR′b(ω)|Ra ∈ I and R′b ∈ I } and the effective
interaction

W̃ (Rab,R′cd, ω) ≡ 〈φRa(r)φRb(r)|W̃ (rR, r′R′, ω)|φR′c(r
′)φR′d(r

′)〉.
We can obtain the total self-energy # by adding the other contributions to it. We refer to the
method used to calculate W̃ in this way as the PRPA method.

We have carried out the calculations using the code originally due to Aryasetiawan and
Gunnarson [9] within the LMTO-ASA [10]. v, P 0,W , and so on, are expanded in the product
basis. The Brillouin zone summations in the calculations of polarizations P 0 and P̃ 0 have
been performed by the tetrahedron method [11], with a small imaginary part δ = 0.01 Ryd to
avoid poles at the energies corresponding to the hole–electron excitation, though the method
allows us to set δ = 0 Ryd. (δ is defined in equation (28) of reference [9].) The dependence
of the results on δ will be examined later.

We calculate the on-site (R = R′) part of W and W̃ for Ni, Fe, and MnO (in the Mn AS) for
antiferromagnetic type-II ordering with the ordinary primitive cells. The number of k-points
used in the irreducible Brillouin zone is 35 for Ni and Fe, and 19 for MnO. The calculations
using some super-cells are also performed for Fe and Ni. For the valence part of the LMTO
basis, we use 4s4p3d4f for Ni and Fe, and use 4s4p3d for Mn and 2s2p3d for O in the case
of MnO. We start from the eigenvalues and eigenfunctions for the potentials given by the
scalar-relativistic self-consistent calculation within the LDA for Fe and Ni. For MnO we take
a potential obtained by an optimized-effective-potential (OEP) method where we treated the
exchange and RPA correlation in the framework of an inhomogeneous RPA calculation [12].

2. Ni and Fe

If we assume spherical (atomic) symmetry, the interactions W are specified by the three Racah
parameters, A(ω), B(ω), and C(ω) [3]. They determine the two kinds of matrix

U(m,m′, ω) ≡ 〈mm|W(rR, r′R,ω)|m′m′〉
and

J (m,m′, ω) ≡ 〈mm′|W(rR, r′R,ω)|m′m〉
where m denotes the 3d basis, and takes the forms xy, yz, zx, x2 − y2, and 3z2 − r2. We also
introduce U , J , A(ω), B(ω), and C(ω) for W̃ in a similar manner. Our calculation shows that
the deviations from spherical symmetry for W and W̃ are small. For example, the difference
between U(xy, xy, ω = 0) and U(x2 − y2, x2 − y2, ω = 0) is ∼2% for W̃ .
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We treat the φ-basis for 3d as the internal part I , and the other φ-basis and the φ̇-basis as
the external part E. Then P̃ 0 depends on how we define the two independent 3d basis functions
φ and φ̇. There are two degrees of freedom, other than normalization, available for defining
the two bases, which correspond to two parameters: the logarithmic derivative D3d and the
tight-binding screening parameter α3d [8]. We use α3d = 0.011 as given by the LMTO-4
code [10], and use D3d = −3.0. Because we use a value of D3d that is independent of the
spin, the spin dependence of U(m,m′, ω) and J (m,m′, ω) is rather small (less than ∼5%, as
for the diagonal part) and we show spin-averaged values only.

Figure 1 shows the Racah parameters calculated in the RPA and in the PRPA up to
ω = 1 Ryd. The diagonal parts U(m,m,ω) (=A + 4B + 3C) are also shown. In the RPA,
the diagonal parts show a rather large ω-dependence and their imaginary parts are larger than
the real part at ω � 0.2 Ryd. The ω-dependence arises mainly from A. The real parts of
A, B, and C in the PRPA show rather small ω-dependence. The imaginary parts are larger
than half the real parts at ω � 0.7 Ryd though they are much smaller than those of the RPA
results. Because of the small ω-dependence and the small imaginary parts of A, B, and C in the
PRPA, we expect to be able to calculate the on-site 3d part of the self-energy, by using a local
approximation, from their static values and the on-site 3d φ-basis part of the Green function.
Such a treatment is apparently free from the problem of double counting of the polarization
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Figure 1. The calculated Racah parameters A,B, and C for Ni (a) and Fe (b). Dots are for W in
the RPA and crosses are for W̃ in the PRPA. The diagonal part is defined as A + 4B + 3C. Solid
lines and broken lines denote real parts and imaginary parts, respectively.
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for screening due to the 3d electrons. We give some further checks below.
In figure 2, we compare A in the case of (a) 35 k-points with a 4s4p3d4f basis as shown

in figure 1 with the cases of (b) 35 k-points with a 4s4p3d basis and (c) 72 k-points with a
4s4p3d basis. It demonstrates that the convergence with respect to the number of k-points
seems reasonable. ARPA for the 4s3p3d case and that for 4s3p3d4f show good agreement at
ω ∼ 0 Ryd but the agreement gradually becomes poor for larger ω, especially at ω � 0.5 Ryd.
The agreement is consistent with the well known fact that the static ground-state densities are
well described by a 4s3p3d basis. On the other hand, the real part of APRPA(ω = 0 Ryd) for
4s3p3d4f is ∼0.05 Ryd smaller than that for 4s3p3d. We also see a larger difference for larger
ω in the imaginary part. This is reasonable because some weight of the PDOS for 3d in the
4s3p3d case shifts to that for 4f in the 4s3p3d4f case. This means we have to project out a
smaller part of P 0 in the case of 4s3p3d4f than in the case of 4s3p3d. This results in larger
screening and gives a smaller W̃ . In figure 3, we show the dependence on the imaginary part
δ. The case of δ = 10−1 Ryd gives substantially flattened structures. On the other hand, the
case of δ = 10−2 Ryd is little different from the case with δ = 10−8 Ryd. The RPA value
of the diagonal part of Ni (0.13 Ryd) shown in figure 1 is a little different from the value
(0.16 Ryd) obtained by Springer and Aryasetiawan [7]. This discrepancy could be a result of
the flattening.
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Figure 2. Dependences of the A-parameters for Fe on the number of k-points and the angular-
momentum cut-off. We show A for W in the RPA and A for W̃ in the PRPA. Dots denote the case
of 35 k-points with a 4s4p3d4f basis. Triangles and squares denote the cases of 35 k-points and
72 k-points, respectively, with a 4s4p3d basis. Solid lines and broken lines denote real parts and
imaginary parts, respectively.

The 3d part of the eigenfunctions should be reproduced well by just the internal part of
the Green function IG—that is, the φ-basis part. This is necessary for a good description of
the correlation effects for 3d and is crucial in calculating the self-energy from IG and W̃ . In
figure 4, the hatched region denotes the 3d PDOS—that is, the DOS for the 3d eigenfunctions
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Figure 3. The dependence of the A-parameter for Fe (for W in the RPA) on the imaginary part δ
which is used in the tetrahedron method for the calculation of the polarization functions P 0 and
P̃ 0. Solid lines and broken lines denote real parts and imaginary parts, respectively.
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Figure 4. Hatched regions show the PDOS of Fe 3d. Broken lines show its contributions from the
φ-basis for 3d. Solid lines show the differences of the two kinds of 3d part of the eigenfunctions
(see the text). We set the Fermi energy at 0 eV.

ψ
kj
d (r)—and the broken lines denote the DOS for the 3d eigenfunctions without the φ̇-basis,

ψ̃
kj
d (r). The solid lines show the difference

,2
d(ω) =

∑
kj

∫
R

d3r |ψkj
d (r) − ψ̃

kj
d (r)|2δ(ω − ωkj )

which equals the product of the parts of φ̇ in the calculation of the PDOS for 3d. Our calculation
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shows that the difference ,2
d(ω) is satisfactorily small, and the PDOS for ψ̃kj

d (r) shows a good
agreement with that for ψkj

d (r) for ω, in which the main peaks for 3d are included. Admittedly,
we still have some disagreement, especially concerning the weight of unoccupied states for
majority spin above the Fermi energy. In figure 5, we show the case of D3d = −2.0 to illustrate
the effects of changes in the basis functions. For B and C, the difference is smaller than in
the case of A (e.g. the real part of B and C at D3d = −2.0 obtained within the PRPA is ∼2%
smaller than those for D3d = −3.0).
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Figure 5. The A-parameters for Fe for different values of D3d. We show A for W in the RPA and
A for W̃ in the PRPA. Triangles and dots denote W for D3d = −2.0 and D3d = −3.0, respectively.
+ and × denote W̃ for D3d = −2.0 and D3d = −3.0, respectively. Solid lines and broken lines
denote real parts and imaginary parts, respectively.

In figure 6, we show a screened Coulomb interaction W̄ which is calculated by an on-site-
only RPA calculation with W̃ and the on-site 3d dielectric functionsP 3d. HereP 3d is calculated
from the 3d φ-basis part of the on-site Green function {GRa,Rb|a, b ∈ (3d φ-basis)}. This RPA
calculation was done in the real-space representation. This W̄ is equal to that from a RPA
calculation with the dielectric function P̄ 0 = P̃ 0 + P 3d. Figure 6 shows that W̄ is rather
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Figure 6. The A-parameters for Fe. The × denote the A-parameters calculated by an on-site-only
RPA calculation with the on-site 3d Green function and the on-site W̃ . Dots denote W in the
RPA, shown for reference. Solid lines and broken lines denote real parts and imaginary parts,
respectively.
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close to W̃ though there are some differences for larger ω. This means that the difference
P 0 − P̄ 0, which is the polarization between In and En, gives relatively small effects. This is
one justification for our division into contributions In and En and treating En as a polarizable
medium. If W̄ differed substantially from W̃ , it would mean that the connection between In
and En was too close, and such a treatment might not be justifiable.

The calculations that have been described were carried out using the primitive unit cell.
However, many theoretical calculations like those in reference [2] are based on impurity-like
treatments. For such treatments, we have to calculate the effective interaction in the impurity-
like configuration—that is, we only identify the 3d φ-basis in the central AS (a site treated as
an impurity) as the internal part I . Because too much computational effort is needed for large
super-cells, we chose a super-cell of minimum size. In the case of Fe with fcc structure, our
super-cell contains two Fe atoms, Fe1 and Fe2, and we just identify the φ-basis for 3d in Fe1
as the internal part. Figure 7 shows that the difference from the case with the primitive cell
is rather small. We have made similar calculations for Ni, and we obtained similar results.
This shows that we do not need the impurity-like configuration for the calculation of W̃ . The
polarization effect of 3d electrons on the other sites should be negligible.
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Figure 7. The A-parameters for W̃ in the PRPA given by a super-cell calculation for Fe. The +
denote the case with the super-cell and the × denote the case with the primitive cell, shown for
reference. Solid lines and broken lines denote real parts and imaginary parts, respectively.

3. MnO

The lattice constant used is 10.26 au, and we set the ASA radii R̄ for Mn and O as 2.923 au
and 2.2 au, respectively. Within the ASA, we can define the Mn 3d PDOS for majority and
minority spins in each Mn AS. In figure 8, we show them calculated by an OEP method [12].
The correspondence of the 3d PDOS to experiments seems good, though we note that the
minimum band gap 2.3 eV is smaller than the experimental value of 3.7 eV. We have to choose
the internal part I so as to reproduce the 3d PDOS well, as was discussed for the Fe case. At
first, we tried a similar analysis to that used for the Fe case, in order to select theφ-basis for 3d in
such a way that the φ-basis part of the Green function will almost give the 3d PDOS. However,
the analysis shows that it is difficult to choose a φ-basis which reproduces the wide energy
range of the 3d PDOS for occupied and unoccupied bands. This is because the behaviour of the
3d radial function as a function of ε3d (ε3d is the energy appearing in the 3d radial Schrödinger
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Figure 8. The 3d PDOS in a Mn atomic sphere for each spin for MnO calculated by an optimized-
effective-potential method [12]. The upper two panels are for the minority spin in the Mn atomic
sphere and the lower two are for the majority spin. The zero of the x-axis denotes the top of the
valence bands.

equation measured from the Fermi energy) changes so much within the range. Therefore we
decided here to treat all the 3d channels of the radial basis—that is, the φ- and φ̇-bases for 3d
for the Mn AS are identified as the internal part I . Correspondingly, IG contains all the 3d
channels of the Green functions expanded in these bases.

In figure 9, we show the diagonal parts of W and W̃ for occupied states and unoccupied
states for each spin. We choose ε3d = −3.0 eV for occupied states and ε3d = 7.0 eV for
unoccupied states. The smallness of the diagonal parts for the minority-spin occupied states
is due to the differences of the 3d radial functions. D3d for the minority-spin occupied,
the majority-spin occupied, the minority-spin unoccupied, and the majority-spin unoccupied
states are +1.24, −1.56, −4.90, and +1.53, respectively (the radial function of the majority-
spin unoccupied states has a node). The radial functions of the minority-spin occupied states
are rather delocalized. Corresponding to this delocalized character, the interactions W and W̃

between the bases of the minority-spin occupied states and of the other states are also small,
though they give similar energy dependences; the value of W̃ varies from ∼0.45 Ryd (at ω = 0)
to ∼0.25 Ryd (at ω = 1 Ryd).

We have calculated the effective interactions of 3d electrons for Ni, Fe, and MnO. As
for Ni and Fe, we obtain the Racah parameters A,B, and C, which give a rather flat energy
dependence. This might provide some justification for using ω-independent values in model
calculations. In the case of MnO, our analysis shows that it might be necessary to include
the φ̇-basis for 3d in addition to the φ-basis for 3d as the internal part I . Then the effective
interaction is substantially dependent on the spins and ε3d, which specify the 3d basis functions.
The interaction W̃ depends on the way in which we choose the internal part I , and so we should
calculate the local part of the self-energy #I from IG and W̃ which might be determined in the
way that we proposed.
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Figure 9. The calculated diagonal parts of W and of W̃ for Mn in MnO. Dots and × denote W

in the RPA and W̃ in the PRPA, respectively. Solid lines and broken lines denote real parts and
imaginary parts, respectively.
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